张兴永,男,中共党员,博士,教授,博士生导师
Email: zhangxingyong1@163.com
2002/9-2006/7,云南师范大学,数学与应用数学,学士
2006/9-2011/6,中南大学,应用数学,博士
工作经历:
2011/7至今,太阳集团见好就收9728,从事教学科研工作
2019/8-2020/8,加拿大Western University, 访问学者
2015/7, 南开大学陈省身数学研究所,访问学者
本科生:数学分析,高等数学(A、C、D),线性代数,概率论与数理统计,复变函数与积分变换
研究生:现代分析基础(硕士), 非线性分析(博士)
研究兴趣:临界点理论、非线性椭圆偏微分方程、非线性Hamilton 系统、非线性差分系统、图上微分方程(差分方程)、PDE最优控制、随机微分方程。
承担科研项目及完成情况:
1.云南省基础研究计划项目---面上项目, 具有一般非标准增长的椭圆方程(组)变号解和基态解的存在性及相关问题研究, 2023/06-2026/05、10万元、在研、主持
2.云南省“兴滇英才支持计划”青年人才项目,2019/01-2023/12、50万元、在研、主持
3.云南省中青年学术技术带头人后备人才项目,2017/01-2022/12、12万元、已出站、主持
4.国家自然科学基金青年科学基金项目, 11301235、Hamilton系统的概周期解和闸轨道问题研究、2014/01-2016/12、23万元、已结题、主持
5.国家自然科学基金数学天元基金, 11226135、Lagrange 系统的最小周期解和次调和解问题研究、2013/01-2013/12、3万元、已结题、主持
6.太阳集团tcy8722人才培养项目,几类带阻尼的常微分系统周期解和同宿轨的存在性研究、2012/01-2014/12、5万元、已结题、主持
7.国家自然科学基金面上项目, 11171351、Hamilton 系统的同宿、异宿轨及相关问题、2012/01-2015/12、已结题、参加
8.中南大学拔尖博士研究生学位论文创新选题资助项目,2万元、已结题、主持
学术称号和学术兼职:
1.云南省中青年学术和技术带头人;
2.云南省“兴滇英才支持计划”青年人才;
3.现任云南省数学会常务理事;
4.现任太阳集团tcy8722数学与交叉科学研究中心负责人(校级平台);
5.现任《Mathematical Reviews》评论员。
获奖情况:获云南省“兴滇英才支持计划”研修访学资助,太阳集团tcy8722伍达观先进教师奖、太阳集团tcy8722红云园丁优秀教师奖、中南大学优秀博士学位论文奖。
以第一和通讯作者身份发表论文41篇,其中SCI检索40篇。
部分论文(* 表示通讯作者)
[1] Ping Yang,Xingyong Zhang*,Existence and multiplicity of nontrivial solutions for a (p, q)-Laplacian system on locally finite graphs,Taiwanese Journal of Mathematics, 2024, Online, DOI: 10.11650/tjm/240201.
[2] Ping Yang, Xingyong Zhang*, Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs, Electronic Research Archive,2023, 31(12): 7473-7495.DOI: 10.3934/era.2023377.
[3] Cuiling Liu, Xingyong Zhang*, Existence and multiplicity of solutions for a quasilinear system with locally superlinear condition, Advances in Nonlinear Analysis, 2023; 12: 20220289, https://doi.org/10.1515/anona-2022-0289.
[4] Xingyong Zhang*,Cuiling Liu, Existence of solutions for a quasilinear elliptic system with local nonlinearity on R^N, Mathematical Methods in the Applied Sciences, 2021, 44(17): 13186- 13212.
[5] Liben Wang, Xingyong Zhang*, Hui Fang, Multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces. Taiwanese Journal of Mathematics, 2017, 21(4): 881-912.
[6] Liben Wang, Xingyong Zhang*, Hui Fang, Existence and multiplicity of solutions for a class of (\phi_1,\phi_2)-Laplacian elliptic system in R^N via genus theory, Computers & Mathematics with Applications, 2016, 72: 110-130.
[7] Xingyong Zhang, Liben Wang, Existence of weak quasi-periodic solutions for a second order Hamiltonian system with damped term via a PDE approach,Electronic Journal of Qualitative Theory of Differential Equations, 2016, (109): 1-14.
[8] Xingyong Zhang, Existence and multiplicity of solutions for a class of elliptic boundary value problems, Journal of Mathematical Analysis and Applications, 410(2014)213-226.
[9] Xingyong Zhang, Xianhua Tang, Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems, Communications on Pure and Applied Analysis, 13(2014)75-95.
[10] Xingyong Zhang, Xianhua Tang, Non-constant periodic solutions for second order Hamiltonian system involving the p-Laplacian, Advanced Nonlinear Studies, 13 (2013)945-964.
[11] Xingyong Zhang, Xianhua Tang, A note on the minimal periodic solutions of nonconvex superlinear Hamiltonian system, Applied Mathematics and Computation, 213(2013) 7586-7590.
[12] 张兴永,一阶带线性部分Hamilton系统的周期解,数学物理学报,3A(5)(2013)894-905.
[13] Xingyong Zhang, Homoclinic orbits for a class of p-Laplacian systems with periodic assumption, Electronic Journal of Qualitative Theory of Differential Equations, (67)(2013)1-26.
[14] Xingyong Zhang, Xianhua Tang, Subharmonic solutions for a class of non-quadratic second order Hamiltonian systems, Nonlinear Analysis-Real World Applications, 13(2012) 113-130.
[15] Xingyong Zhang, Infinitely many solutions for a class of second-order damped vibration systems, Electronic Journal of Qualitative Theory of Differential Equations, (15)(2013) 1-18.
[16] Xingyong Zhang, Xianhua Tang, Periodic solutions for second order Hamiltonian system with a p-Laplacian, Bulletin of The Belgian Mathematical Society-Simon Stevin, 18(2011)301-309.
[17] Xingyong Zhang, Yinggao Zhou, On periodic solutions of non-autonomous second order Hamiltonian system, Applications of Mathematics, 55(2010)373-384.
[18] Xingyong Zhang, Xianhua Tang, Periodic solutions for an ordinary p-Laplacian system, Taiwanese Journal of Mathematics, 15(2011)1369-1396.
[19] Xianhua Tang, Xingyong Zhang, Periodic solutions for second-order discrete Hamiltonian systems, Journal of Difference Equations and Applications, 17(2011)1413-1430.
[20] Xingyong Zhang, Xianhua Tang, Non-constant periodic solutions for second order Hamiltonian system with a p-Laplacian. Mathematica Slovaca, 62(2012)231-246.
[21] Xingyong Zhang, Xianhua Tang, Existence of solutions for a nonlinear discrete system involving the p-Laplacian, Applications of Mathematics, 57(2012)11-30.
[22] Xingyong Zhang, Yinggao Zhou, Periodic solutions of non-autonomous second order Hamiltonian systems, Journal of Mathematical Analysis and Applications, 45(2008) 929-933.