张兴永

作者: 时间:2021-04-17

 

  张兴永,男,中共党员,博士,教授博士生导师

Email: zhangxingyong1@163.com

 

2002/9-2006/7,云南师范大学,数学与应用数学,学士

2006/9-2011/6,中南大学,应用数学,博士

工作经历:

2011/7至今,太阳集团见好就收9728,从事教学科研工作

2019/8-2020/8,加拿大Western University, 访问学者

2015/7, 南开大学陈省身数学研究所,访问学者

 

本科生:数学分析,高等数学(ACD),线性代数,概率论与数理统计,复变函数与积分变换

研究生:现代分析基础硕士, 非线性分析(博士)

 

研究兴趣:临界点理论、非线性椭圆偏微分方程、非线性Hamilton 系统、非线性差分系统、图上微分方程(差分方程)、PDE最优控制、随机微分方程。

承担科研项目及完成情况:

1.云南省基础研究计划项目---面上项目, 具有一般非标准增长的椭圆方程(组)变号解和基态解的存在性及相关问题研究, 2023/06-2026/0510万元、在研、主持

2.云南省“兴滇英才支持计划”青年人才项目,2019/01-2023/1250万元、在研、主持

3.云南省中青年学术技术带头人后备人才项目,2017/01-2022/1212万元、已出站、主持

4.国家自然科学基金青年科学基金项目, 11301235Hamilton系统的概周期解和闸轨道问题研究、2014/01-2016/1223万元、已结题、主持

5.国家自然科学基金数学天元基金, 11226135Lagrange 系统的最小周期解和次调和解问题研究、2013/01-2013/123万元、已结题、主持

6.太阳集团tcy8722人才培养项目,几类带阻尼的常微分系统周期解和同宿轨的存在性研究、2012/01-2014/125万元、已结题、主持

7.国家自然科学基金面上项目, 11171351Hamilton 系统的同宿、异宿轨及相关问题、2012/01-2015/12、已结题、参加

8.中南大学拔尖博士研究生学位论文创新选题资助项目,2万元、已结题、主持

学术称号和学术兼职:

1.云南省中青年学术和技术带头人;

2.云南省“兴滇英才支持计划”青年人才;

3.现任云南省数学会常务理事;

4.现任太阳集团tcy8722数学与交叉科学研究中心负责人(校级平台);

5.现任《Mathematical Reviews》评论员。

 

获奖情况:云南省“兴滇英才支持计划”研修访学资助,太阳集团tcy8722伍达观先进教师奖、太阳集团tcy8722红云园丁优秀教师奖、中南大学优秀博士学位论文奖。


以第一和通讯作者身份发表论文41篇,其中SCI检索40篇。

部分论文(* 表示通讯作者)

[1] Ping Yang,Xingyong Zhang*,Existence and multiplicity of nontrivial solutions for a (p, q)-Laplacian system on locally finite graphs,Taiwanese Journal of Mathematics, 2024, Online, DOI: 10.11650/tjm/240201.

[2] Ping Yang, Xingyong Zhang*, Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs, Electronic Research Archive,2023, 31(12): 7473-7495.DOI: 10.3934/era.2023377.

[3] Cuiling Liu, Xingyong Zhang*, Existence and multiplicity of solutions for a quasilinear  system with locally superlinear condition, Advances in Nonlinear Analysis, 2023; 12: 20220289, https://doi.org/10.1515/anona-2022-0289.

[4] Xingyong Zhang*Cuiling Liu, Existence of solutions for a quasilinear elliptic system with local nonlinearity on R^N, Mathematical Methods in the Applied Sciences, 2021, 44(17): 13186- 13212.

[5] Liben Wang, Xingyong Zhang*, Hui Fang, Multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces. Taiwanese Journal of Mathematics, 2017, 21(4): 881-912.

[6] Liben Wang, Xingyong Zhang*, Hui Fang, Existence and multiplicity of solutions for a class of (\phi_1,\phi_2)-Laplacian elliptic system in R^N via genus theory, Computers & Mathematics with Applications, 2016, 72: 110-130.

[7] Xingyong Zhang, Liben Wang, Existence of weak quasi-periodic solutions for a second order Hamiltonian system with damped term via a PDE approach,Electronic Journal of Qualitative Theory of Differential Equations, 2016, (109): 1-14.

[8] Xingyong Zhang, Existence and multiplicity of solutions for a class of elliptic boundary value problems, Journal of Mathematical Analysis and Applications, 410(2014)213-226.

[9] Xingyong Zhang, Xianhua Tang, Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems, Communications on Pure and Applied Analysis, 13(2014)75-95.

[10] Xingyong Zhang, Xianhua Tang, Non-constant periodic solutions for second order Hamiltonian system involving the p-Laplacian, Advanced Nonlinear Studies, 13 (2013)945-964.

[11] Xingyong Zhang, Xianhua Tang, A note on the minimal periodic solutions of nonconvex superlinear Hamiltonian system, Applied Mathematics and Computation, 213(2013) 7586-7590.

[12] 张兴永一阶带线性部分Hamilton系统的周期解,数学物理学报,3A(5)(2013)894-905.

[13] Xingyong Zhang, Homoclinic orbits for a class of p-Laplacian systems with periodic assumption, Electronic Journal of Qualitative Theory of Differential Equations, (67)(2013)1-26.

[14] Xingyong Zhang, Xianhua Tang, Subharmonic solutions for a class of non-quadratic second order Hamiltonian systems, Nonlinear Analysis-Real World Applications, 13(2012) 113-130.

[15] Xingyong Zhang, Infinitely many solutions for a class of second-order damped vibration systems, Electronic Journal of Qualitative Theory of Differential Equations, (15)(2013) 1-18.

[16] Xingyong Zhang, Xianhua Tang, Periodic solutions for second order Hamiltonian system with a p-Laplacian, Bulletin of The Belgian Mathematical Society-Simon Stevin, 18(2011)301-309.

[17] Xingyong Zhang, Yinggao Zhou, On periodic solutions of non-autonomous second order Hamiltonian system, Applications of Mathematics, 55(2010)373-384.

[18] Xingyong Zhang, Xianhua Tang, Periodic solutions for an ordinary p-Laplacian system, Taiwanese Journal of Mathematics, 15(2011)1369-1396.

[19] Xianhua Tang, Xingyong Zhang, Periodic solutions for second-order discrete Hamiltonian systems, Journal of Difference Equations and Applications, 17(2011)1413-1430.

[20] Xingyong Zhang, Xianhua Tang, Non-constant periodic solutions for second order Hamiltonian system with a p-Laplacian. Mathematica Slovaca, 62(2012)231-246.

[21] Xingyong Zhang, Xianhua Tang, Existence of solutions for a nonlinear discrete system involving the p-Laplacian, Applications of Mathematics, 57(2012)11-30.

[22] Xingyong Zhang, Yinggao Zhou, Periodic solutions of non-autonomous second order Hamiltonian systems, Journal of Mathematical Analysis and Applications, 45(2008) 929-933.

版权所有©太阳集团见好就收(9728·China认证)中国官方网站

技术支持:太阳集团tcy8722信息化建设管理中心